
Software Engineering

 6 - 1

SOFTWARE TESTING

l Quality Assurance l Testing Strategies

m Software Quality m Unit Testing

m Software Reviews m Integration Testing

m Software Quality Metrics m Validation Testing

m Formal SQA Approaches m System Testing

m Software Reliability m Debugging

m SQA Plan

l Testing Techniques

m Black Box Testing

m White Box Testing

Objectives of Module 6

l Define Software Quality Assurance (SQA)

l Describe techniques, metrics, methods, and formal approaches to assuring

software quality

l Describe methods for performing black box software testing

l Describe methods for performing white box software testing

l Describe strategies for testing software at the unit, subsystem, and system level

Software Engineering

 6 - 2

Software Development
Lifecycle

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Software Engineering

 6 - 3

Software Quality Assurance

Conformance to explicitly stated functional and performance

requirements, explicitly documented development
standards, and implicit characteristics that are expected of

all professionally developed software.

 -- a definition of Software Quality, Pressman, Page 550

1. Quality is measured against software requirements .

2. Development standards guide the process of engineering software to

increase the probability of high quality.

3. Implied requirements must be met as well and those requirements

explicitly stated.

Software Engineering

 6 - 4

Software Quality Factors

l Directly Measured

m Errors

m Lines of Code

m Execution Time of Unit

l Indirectly Measured

m Usability

m Maintenance

Software Engineering

 6 - 5

Software Quality Factors

Product
Transition

Product
Revision

Product Operations

McCall, J., P. Richards, and G. Walters, "Factors in Software Quality,"

three volumes, NTIS AD-A049-014, 015, 055, November 1977

Correctness. The extent to which a program satisfies its specification and fulfills the

customer's mission objectives.

Reliability. The extent to which a program can be expected to perform its intended

function with required precision.

Efficiency. The amount of computing resources and code required by a program to

perform its function.

Integrity. The extent to which access to software or data by unauthorized persons can be

controlled.

Usability. The effort required to learn, operate, prepare input, and interpret output of a

program.

Maintainability. The effort required to locate and fix an error in a program.

Flexibility. The effort required to modify an operational program.

Testability. The effort required to test a program to ensure that it performs its intended
function.

Portability. The effort required to transfer the program from one hardware and/or software

system environment to another.

Reusability. The extent to which a program (or parts of a program) can be reused in other
applications -- related to the packaging and scope of the functions that the program

performs.

Interoperability. The effort required to couple one system to another.

Software Engineering

 6 - 6

Software Quality Checklists

Quality Factor Spec Design Impl Test Support

Functionality

Usability

Reliability

Performance

Supportability

Enter 0 (very poor) to 10 (outstanding) in each block to indentify quality

Grady, R.B., and D.L. Caswell, Software Metrics: Establishing a

Company-Wide Program, Prentice-Hall, 1987

Functionality. Functionality is assessed by evaluating the feature set and

capabilities of the program, the generality of the functions that are

delivered, and the security of the overall system.

Usability. Usability is assessed by considering human factors, overall aesthetics,
consistency, and documentation.

Reliability. Reliability is evaluated by measuring the frequency and severity of

failure, the accuracy of output results, the mean time between feailure
(MTBF), the ability to recover from failure, and the predictability of the

program.

Performance. Performance is measured by evaluating processing speed,

response time, resource consumption, throughput, and efficiency.

Supportability. Supportability combines the ability to extend the program

(extensibility), adaptability, and serviceability (these three attributes

represent a more common term -- maintainability), in addition to testability,

compatibility, configurability (the ability to organize and control elements of
the software configuration), the ease with which a system can be installed,

and the ease with which problems can be localized.

Software Engineering

 6 - 7

Software Quality Assurance (SQA)

l SQA is a "planned and systematic pattern of

actions" to ensure quality in software.

l SQA is essential for any business which

produces software products used by others.

l The SQA group serves as an in-house

representative of the customers.

SQA has the following major activities:

1. Application of technical methods to define, assess, and verify or validate

software quality

2. Conduct of formal technical reviews

3. Software testing

4. Enforcement of standards

5. Control of change

6. Measurement

7. Record keeping and reporting

Software Engineering

 6 - 8

Software Reviews

Formal Technical Reviews (FTR)

l Uncover errors in function, logic, and implementation for any

representation of the software

l Verify that software meets specifications

l Ensure that software conforms to standards

l Ensure that software is developed in a uniform manner

l Ensure that the project is manageable

Class of Reviews

l Code Walkthroughs

l Code Inspections

l Round-Robin Reviews

l Others

Software Engineering

 6 - 9

Formal Technical Review
Constraints

l 3-5 people in meeting -- developer, 2-3 reviewers, SQA

representative, and recorder

l < 2 hours preparation time per person (pre-review before the

meeting)

l < 2 hours for the meeting duration

During the Meeting

l Focus on a small, specific part of the software

l Review is initiated by SQA after the developer is done

l Developer talks through the product

l Recorder keeps notes on errors, issues, resolutions, and

action items

l All attendees sign off on the team's findings

Review Guidelines

l Review the product, not the developer

l Set an agenda and maintain it

l Limit debate and rebuttal

l Clarify the problem areas -- don't attempt to solve every problem

l Take written notes

l Limit the number of participants

l Insist upon advanced preparation

l Develop a checklist for each product to be reviewed

l Allocate resources and time schedule for the FTR

l Conduct meaningful training for all reviewers

l Review earlier reviews

Software Engineering

 6 - 10

Software Quality Metrics

l U.S. Air Force Systems Command Pamphlet 800-14:

Design Structure Quality Index

l IEEE Standard 982.1-1988: Software Maturity Index

l Halstead's Software Science

l McCabe's Complexity Metric

Software Engineering

 6 - 11

AFSCP 800-14 Design Structure
Quality Index (DSQI)

Three Steps:

1. Obtain specific information about the program (S1-S7)

2. Determine intermediate values (D1-D6)

3. Compute DSQI:
DSQI wiDi=Â

wi is the relative weight of Di

DSQI is used by comparing it with previous DSQI's. If much lower

than expected, there is a need to do more design and review.

3 Based on database and data flow items

S1: number of modules in program D1: 1 if program is design with a

formal process; 0 otherwise

S2: number of modules that input D2: 1-S2/S1 (module independence)

or output data (not control)

S3: number of modules that D3: 1-S3/S1 (modules not dependent

depend on prior processing on prior processing)

S4: number of database items D4: 1-S5/S4 (database size)

(incl. data objects and all

attributes that define objects)

S5: number of unique database D5: 1-S6/S4 (database compart-

items mentalization)

S6: number of database sections D6: 1-S7/S1 (module entrance/exit

(i.e., records or individual characteristic)

objects)

S7: number of modules with single

entry and exit

Software Engineering

 6 - 12

IEEE Software Maturity Index (SMI)

MT = # modules in current release

Fc = # modules in current release

 that have changed

Fa = # modules in current release

 that have been added

Fd = # modules from preceding

 release that were deleted in current

 release

SMI
MT Fa Fc Fd

MT

=
- + +()

As SMI approaches 1.0, the product is stabilizing.

l Based on changes because of software updates

Software Engineering

 6 - 13

Halstead Software Science

n1 = # distinct operators in program

n2 = # distinct operands in program

N1 = # operator occurrences

N2 = # operand occurrences

Given:

N n n n n

V N n n

L

n

n

N

= +

= +

=

1 2 1 2 2 2

2 1 2
2

1

2

2

log log

log ()

*

Program Length statements

Volume bits to represent algorithm

Volume Ratio min volume relative to
actual volume possible

l Based on operator/operand counts

l Lots of experimental work done

l Controversial

l Good agreement with reality

l N and V vary with the programming language

Software Engineering

 6 - 14

Example of Halstead’s Metrics
SUBROUTINE SORT (X, N)

DIMENSION X(N)

IF (N .LT. 2) RETURN

DO 20 I=2,N

 DO 10 J=1,I

 IF (X(I) .GE. X(J)) GOTO 10

 SAVE = X(I)

 X(I) = X(J)

 X(J) = SAVE

 10 CONTINUE

 20 CONTINUE

RETURN

END

Program

Software Engineering

 6 - 15

Example of
Halstead’s

Metrics,
Continued

Operator Count

1 End of statement 7

2 Array subscript 6

3 = 5

4 IF () 2

5 DO 2

6 , 2

7 End of program 1

8 .LT. 1

9 .GE. 1

10 GOTO 10 1

n1 = 10 N1 = 28

Operators

Software Engineering

 6 - 16

Example of
Halstead’s

Metrics,
Continued

Operand Count

1 X 6

2 I 5

3 J 4

4 N 2

5 2 2

6 SAVE 2

7 1 1

n2 = 7 N2 = 22

Operands

Software Engineering

 6 - 17

Example of Halstead’s Metrics,
Continued

N

V

L

= + =

= + =

= F
H

I
K
F
H

I
K

= =

10 210 7 27 52 871

2 10 7 4 0875

2

10

7

22

14

220
0 06364

log log .

log () .

.

Software Engineering

 6 - 18

McCabe’s Complexity Metric

l Create program graph, G

l Determine cyclomatic complexity, V(G)

l Useful for estimating testing difficulty

V(G) > 10 indicates tough testing

l Based on control flow of program

Software Engineering

 6 - 19

Program Graph and V(G)

a

b c d

e

f

R1
R2

R3

R4

R5

V(G) = # regions in planar graph

 = 5

Software Engineering

 6 - 20

Formal Approaches to SQA

1. Proof of Correctness

2. Statistical Quality Assurance

3. Cleanroom Process

Software Engineering

 6 - 21

Proof of Correctness

Formal model

of Requirements

Formal Model

of Implemented

Program

Proof of

Conformance

Agreement!

Software Engineering

 6 - 22

Proof of Correctness
Stmt Code

1 procedure RANDOM (SEED : in FLOAT) return FLOAT is

2 begin

3 assert (SEED > 0 and SEED < MAX.FLOAT)

... ...

n-2 assert (RESULT > 0.0 and RESULT < 1.0)

n-1 return RESULT;

n end RANDOM;

l To show that the program is correct, statements 3 to n-2 must unambiguously

produce RESULT within the range from 0.0 to 1.0 given a SEED value.

l Tighter assertions provide more specific verification conditions.

Software Engineering

 6 - 23

Statistical Quality Assurance

1. Software defect information is collected.

2. Trace each defect to its cause.

3. Identify the 20% "vital few" defects.

4. Correct the "vital few" defects.

1. Statistical quality assurance is a growing trend in industry.

2. Pareto Principle - 80% of all defects can be traced to 20% of all possible

causes.

Software Engineering

 6 - 24

Data Collection for Statistical SQA
Example:

Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22 34 27 68 18 103 24

MCC 156 17 12 9 68 18 76 17

IDS 48 5 1 1 24 6 23 5

VPS 25 3 0 0 15 4 10 2

EDR 130 14 26 20 68 18 36 8

IMI 58 6 9 7 18 5 31 7

EDL 45 5 14 11 12 3 19 4

IET 95 10 12 9 35 9 48 11

other 180 19 20 16 71 18 89 20

Totals 942 128 379 435

IES, MCC, and EDR are the "vital few"

Definitions

IES - Incomplete or erroneous specification

MCC - Misinterpretation of customer communication

EDR - Error in data representation

IDS - Intentional deviation from specification

VPS - Violation of programming standards

IMI - Inconsistent module interface

EDL - Error in design logic

IET - Incomplete or erroneous testing

Software Engineering

 6 - 25

Defect Index
Di = # defects uncovered in
 ith step of software engineering
 process

Si = # serious defects
Mi = # moderate defects
Ti = # minor defects
PS = size of product (LOC,

 pages of doc, etc.)

Wj = weighting factor (j=1 for serious

 defect, 2 for moderate defect, 3 for
 minor defect)

PIi W
Si

Di

W
Mi

Di

W
Ti

Di

DI
i PIi

PS

PI PI PI

PS

= F
H

I
K
+ F

H
I
K
+ F

H
I
K

= =
+ + +Â

1 2 3

1 2 2 3 3(*) ...

l Defect Index can be used in conjunction with information collected in the prior

chart to indicate the overall improvement in quality.

l Morale of story -- concentrate on the few things that really matter.

Software Engineering

 6 - 26

Cleanroom Software Engineering

l Software developed under statistical quality control

l Goal is defect prevention rather than defect removal

l Proof of correctness is used to prevent defects

l Statistical QA used to certify the quality of the software

l Cleanroom approach has been shown to remove 90% of all defects

prior to first tests

l General use of method would require substantial changes in

management and technical approaches in industry

Software Engineering

 6 - 27

Software Testing

1. Introduction

2. White Box Testing

3. Black Box Testing

4. Test Strategies

Software Engineering

 6 - 28

Software Fundamentals

Testing objectives

1. We test to find errors

2. A good test case has a high probability of finding

an as yet undiscovered error

3. A successful test uncovers an as yet undiscovered
error

Testing cannot show the absence of defects, it can only show

that software defects are present.

Software Engineering

 6 - 29

Test Flow

Testing

Evaluation

Reliability
model

Debug

Software
Configuration

Test
Configuration

Expected
Results

Error rate
data

Predicted
Reliability

Test
Results

Errors

Corrections

Software Engineering

 6 - 30

White and Black Box Testing

Uses the control structure of the procedural design to
derive test cases

1. Basis Path Testing

2. Control Structure Testing

White Box Testing

Black Box Testing

Uses functional requirements including input/output
relations to derive tests.

1. Equivalence Partitioning

2. Boundary Value Analysis

3. Cause-Effect Graphing Techniques

4. Comparison Testing

Software Engineering

 6 - 31

White Box Testing

1. White box tests exercise all

- independent paths with a module at least once

- logical decisions on their true and false sides

- loops at their boundaries and within their operational bounds

- internal data structures to ensure their validity

2. Why test as white box rather than black box (which is easier)?

- Logic errors and incorrect assumptions are inversely
proportional to the probability that a program path will be
executed.

- We often believe that a logical path is not likely to be
executed when, in fact, it may be executed on a regular basis.

- Typographical errors are random.

Software Engineering

 6 - 32

Basis Path Testing

Test derived from a basis set of execution paths.

Cyclomatic number V(G) of the program graph is the upper bound of
the size of the basis set.

The size of the basis set is the number of tests that must be designed
and executed to guarantee coverage of all program statements.

Procedure:

1. Using the design or code as a foundation, draw a
corresponding flow graph.

2. Determine the cyclomatic complexity of the resultant flow
graph.

3. Determine a basis set of linearly independent paths

4. Prepare test cases that will force execution of each path in
the basis set.

Software Engineering

 6 - 33

Creating Program Graphs

If While Until Case

Software Engineering

 6 - 34

Example Program Graph

1

2,3

4

8,9
65

7

10

11

while x>0

y:=1

if x>10 then

 if z then x:=-2

 else x:=-3

 end if

else y:=4

 x:=-1

end if

end loop

return

1

2

3

4,5

6

7

8

9

10

11

Software Engineering

 6 - 35

Deriving Independent Paths

1

2,3

4

8,9
65

7

10

11

Independent Paths

 (basis set)

1. 1,11

2. 1,2,3,8,9,10,1,11

3. 1,2,3,4,6,7,10,1,11

4. 1,2,3,4,5,7,10,1,11

R4

R1

R2R3

V(G) = E-N+2
V(G) = 4

Software Engineering

 6 - 36

Deriving Test Cases

while x>0

y:=1

if x >10 then

 if z then x:=-2

 else x:=-3

 end if

else y:=4

 x:=-1

end if

end loop

return

1

2

3

4,5

6

7

8

9

10

11

Path 1,11

input: x < 1

output: unchanged x,y

Path 1,2,3,8,9,10,1,11

input: x > 0 and x < 10

output: y:=4, x:=-1

Path 1,2,3,4,6,7,10,1,11

input: x > 10 and z = false

output: y:=1, x:=-3

Path 1,2,3,4,5,7,10,1,11

input: x > 10 and z = true

output: y:=1, x:=-2

Tests:Routine:

Software Engineering

 6 - 37

Control Structure Testing

The basis path testing technique previously described is one
of a number of techniques for Control Structure Testing.

Basis path testing is simple and effective, but it is not sufficient
in and of itself. Other variations on Control Structure Testing
include:

lLoop Testing

lCondition Testing

lData Flow Testing

Software Engineering

 6 - 38

Condition Testing

Condition Testing exercises the logical conditions contained in a
program module.

A simple condition is a boolean variable or a relational expression,
possibly preceded with one NOT operator.

A relational expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator>
is one of the following:

< <= = /= (inequality) > >=

A compound condition is composed of two or more simple conditions,
boolean operators, and parentheses. It is assumed that boolean operators
are used in a compound condition.

A boolean expression is a condition without relational expressions.

Software Engineering

 6 - 39

Data Flow Testing

Data Flow Testing involves the selection of test paths of a program
according to the locations of definitions and uses of variables in the
program.

With X representing a variable and S representing the number of a
statement, we define:

DEF(S) = {X | statement S contains a definition of X}
USE(S) = {X | statement S contains a use of X}

A definition-use chain (or DU chain) of variable X is of the form
[X, S, S’], where S and S’ are statement numbers, X is in DEF(S)
and USE(S’), and the definition of X in statement S is live at
statement S’.

The DU testing strategy requires that every DU chain be covered at
least once.

Software Engineering

 6 - 40

Loop Testing
Loop testing is a white box testing technique that focuses exclusively
on the validity of loop constructs. Four different classes of loops can
be defined:

l Nested loops
l Concatenated loops
l Simple loops
l Unstructured loops

Software Engineering

 6 - 41

Black Box Testing

Black box testing methods focus on the functional requirements of the
software. A set of input conditions is derived which fully exercises all
functional requirements for a program or code fragment in black box
testing.

Black box testing attempts to find errors in the following categories:

lincorrect or missing functions
linterface errors
lerrors in data structures or external database access
lperformance errors
linitialization and termination errors

Software Engineering

 6 - 42

Black Box Testing Methods
l Equivalence Partitioning - divides the input domain of a program
into classes of data from which test cases can be derived

l Boundary Value Analysis - selects test cases that exercise
bounding values

l Cause-Effect Graphing Techniques - provide concise representations
of logical conditions and corresponding actions

l Comparison Testing - develop software redundantly, using separate
software development teams for the same module, and compare the
results generated by the independent modules

Software Engineering

 6 - 43

Kinds of Automated Testing Tools

l Static analyzers
l Code auditors
l Assertion processors
l Test file generators
l Test data generators
l Test verifiers
l Test harnesses
l Output comparators
l Symbolic execution systems
l Environment simulators
l Data flow analyzers

